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Abstract

Recently, a relation betweenN = 4 Super Yang Mills in 3+1 dimensions and supergravity

in an AdS5 background has been proposed. In this paper we explore the idea that the

correspondence between operators in the Yang Mills theory and modes of the supergravity

theory can be obtained by using the D3 brane action. Speci�cally, we consider two form

gauge �elds for this purpose. The supergravity analysis predicts that the operator which

corresponds to this mode has dimension six. We show that this is indeed the leading operator

in the three brane Dirac-Born-Infeld and Wess-Zumino action which couples to this mode.

It is important in the analysis that the brane action is expanded around the anti de-Sitter

background. Also, the Wess-Zumino term plays a crucial role in cancelling a lower dimension

operator which appears in the the Dirac-Born-Infeld action.



1. Introduction and Summary

One of the interesting outcomes of recent progress in string theory has been the rela-

tionship between gauge theories and gravity, particularly in the context of black holes. In

particular, classical scattering of various �elds from non-dilatonic black holes like extremal

three branes are reproduced by correlators of the gauge theories living on the brane worldvol-

ume [1]. Noting the fact that the near-horizon geometry of such black holes is in fact a �ve

dimensional anti-de Sitter (AdS) space, Maldacena has conjectured that the large N limit of

a conformally invariant d- dimensional Yang Mills theory in fact contains supergravity (and

IIB superstring theory) in (d+ 1) dimensional AdS space [2]. This has led to some progress

in understanding the strong coupling behavior of these gauge theories in the large-N limit.

The conjecture was further investigated in [3] and [4] where a concrete prescription was

given for relating observables in the supergravity and the Yang Mills theories. The idea in [3],

[4] was to consider AdS space together with a boundary. The dependence of the supergravity

action on the boundary values of �elds then yields the required generating functional from

which Greens functions can be calculated.

In this paper we will be concerned with 3 + 1 dimensional SU(N) Yang Mills theories

with N = 4 supersymmetry. The proposal of [2] relates this theory to ten- dimensional

Type IIB supergravity compacti�ed on AdS5 � S5. Using the recipe outlined above, several

two point correlation functions were calculated in [3] and [4] and recently some three point

functions have been computed in [5]. For some special operators, which are either chiral or

protected from renormalization e�ects for other reasons agreement was found between the

anomalous dimensions as calculated in the Yang mills and the supergravity theories. For

other operators this led to a determination of the anomalous dimensions in the large N limit.

A large class of such operators are marginal or relevant in the Yang-Mills theory. It is

important to examine the relation between higher dimensional operators and supergravity

modes as well. Some higher dimensional operators have been studied in [6]. These may

have two di�erent roles in the supergravity context. For some supergravity modes, like the

�xed scalar, these are responsible for the leading order absorption by the black 3-brane and

related to the correlator in the AdS space itself. For other modes, like the dilaton, they are

responsible for corrections to the leading result and probe the 3-brane metric beyond the

AdS throat [6].

In this note we continue the study of this set of ideas by focussing on another supergravity

mode: the two index NS-NS antisymmetric tensor �eld with a polarization parallel to some

directions of the brane 1. The propagation of this mode in AdS space was investigated

in [7], where, after incorporating the mixing with the R-R two form �eld it's mass was

1 Another mode is obtained by interchanging the roles of the NS-NS and R-R two form �elds, our results

apply to this case as well.
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determined. More recently in [8] the cros-section for scattering this �eld o� a extremal black

hole was calculated. These studies show that the scattering of the two form �eld (with a

polarization parallel to the brane) should be suppressed for small energies. Correspondingly

the operator in the Yang Mills theory to which it couples should have a total dimension of

six. Determination of this operator will be the goal of this paper. We should mention that

this operator has been identi�ed in [9], [10], from considerations of superconformal symmetry
2.

So far, in the literature, the principle behind a precise correspondence between various

modes in the supergravity theory and operators in the Yang Mills theory has not been spelt

out. In this note we explore the idea that the operators of the Yang Mills theory can be

obtained by expanding an action consisting of the (non-abelian) Dirac-Born-Infeld (DBI)

and Wess-Zumino (WZ) terms. We will see that, for the antisymmetric tensor, the correct

Yang Mills operator can be identi�ed in this way, but only if the action is expanded about

AdS spacetime and the accompanying �ve form �eld strength background. In many ways

this is the natural expectation. The supergravity mode being considered is a perturbation

about AdS space. Thus one expects that to consistently couple it, the DBI action should

also be expanded about the AdS background. Related points have been recently made in

[11]. The conformal symmetry of the three brane action has been studied in [12].

It should be emphasized that here the DBI plus WZ action will be used to identify the

correct operators in the AdS-Yang Mills correspondence. Whether higher order corrections

to the correlator in the full 3-brane geometry require the gauge �eld dynamics to be governed

by the DBI-WZ action remains to be seen. Some evidence in favor of this has been presented

in [6].

One noteworthy feature about our analysis is that the WZ term plays an important role

in it. The leading operator obtained from the DBI action has engineering dimension of four.

But the coupling to this operator is cancelled by a contribution coming from the Wess-

Zumino term. Thus the leading operator obtained from the whole action, which couples

to this supergravity mode, has dimension six at tree level. As was mentioned above, the

supergravity analysis shows that this must in fact be its total dimension. We learn in this

way that the operator studied here does not acquire any anomalous dimension in the large

N limit. This is also true of the dimension eight operator studied in [6].

One more point about our discussion below needs to be mentioned. In expanding the

action we will need to decide where the DBI-WZ action lives in AdS space. As was mentioned

above, the basic idea in the discussion of [3] and [4] is that the boundary values for the

supergravity modes act as sources for the Yang Mills �eld operators. This suggests the DBI-

WZ action should be expanded around the boundary of AdS space. In fact, as we will see

2We thank the authors of [9],[10] for correspondence in this regard.
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here, this yields a consistent answer. We do not, however, take this to mean that there are

D3-branes physically located at the boundary.

Clearly, this analysis needs to be extended for other modes as well. For one class of

Yang Mills operators the coupling to the supergravity modes has been written down from

superconformal symmetry considerations in [9]. It will be interesting to see if these and the

couplings to all the other supergravity modes can be obtained by expanding the DBI-WZ

action. We hope to report more fully on these questions in the future. Let us mention one

�nal point. Our discussion in this note suggests that in the conformally non-invariant cases,

the supergravity theory should correspond to a Yang Mills theory not in at space-time but

in the supergravity background instead.

2. The Supergravity Analysis

A system of N parallel D3- branes is described by an extremal black hole geometry with

a metric:

ds2 = H�1=2(dxi)2 +H1=2(dxa)2; (2.1)

with

H = 1 +
R4

r4
: (2.2)

Here xi; i = 0; � � � 3, refer to the four coordinates parallel to the brane world volume, xa to

the coordinates transverse to the brane, r2 = (xa)2 is the transverse coordinate distance

away from the branes, and R4 = 4�gsN(�
0

)2, where gs is the string coupling, related to

the Yang-Mills coupling gY M by gs = g2YM . In the near horizon region, r � R, this metric

reduces to that of AdS5 � S5:

ds2 =
r2

R2
(dxi)2 +

R2

r2
(dxa)2: (2.3)

we see that the S5 has a radius R and the geometry is smoothly varying if g2Y MN is large.

The dilaton is constant in this background, while the self dual �ve form �eld strength in the

near horizon region is given by:

F0123r =
r3

R4
: (2.4)

Following [7] and [8] we now consider the propagation of the NS-NS and R-R two form

�elds in the AdS background. The NS-NS and R-R gauge potentials will be denoted by B��

and A�� and the corresponding �elds strengths by H��� and F��� respectively. The equations

governing the propagation of these modes are [13]:

r�H��� = (
2

3
)F�����F

���

r�F��� = �(2
3
)F�����H

���: (2.5)
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We see that in the presence of a non-zero �ve-form �eld strength the B�� and A�� �elds

mix with each other.

Here we only consider an s-wave mode with the NS-NS two form being polarised along

the brane directions. For simplicity, the only component of B�� that is non-zero will be

chosen to be B12. Eq. (2.5) can now be used to solve for F��� in terms of B12 and gives 3 :

F0r3 = �4 Fr3012 g11g22 B12; (2.6)

with all the other components of the three form RR �eld strength being zero. In the subse-

quent discussion we consider a perturbation with energy !, with a resulting time dependence

e�i!t. >From eq. (2.5), eq. (2.6), we then get an equation for B12:

1p
�g

1

g11
1

g22
@r(
p
�ggrrg11g22@rB12)� w2g00B12 = �16F 2

0123rg
00grrg33g11g22B12: (2.7)

Substituting for F0123r, from eq. (2.4) now gives:

1p
�g

1

g11
1

g22
@r(
p
�ggrrg11g22@rB12)� w2g00B12 =

16

R2
B12: (2.8)

Thus we see that the mode corresponds to a �eld with mass m = 4
R
. In the correspondence

between Supergravity and Yang Mills theory the region, r � R is particularly relevant. In

this region the second term on the left hand side of eq. (2.8 ) can be neglected, giving rise

to two solutions with, B12 � r�4. Of these the case,

B12 � c r4; (2.9)

can be extended to a non-singular solution in the small r region, it will be the relevant one

for the subsequent discussion.

We can also solve for the R-R two form A, corresponding to eq. (2.9). From eq. (2.6),

in the r� R region it is given by:

A03 = �B12 (2.10)

with all other components being zero.

Now that our analysis of the supergravity mode is complete we can use the prescription

of [3], [4] to calculate the anomalous dimension of the Yang Mills operator that corresponds

to it. The general formula relating the anomalous dimension, �, to the mass for a p form is:

(�� p)(� + p � 4) = m2; (2.11)

where the mass is measured in units of R. In this case, m2 = 16, eq. (2.8), setting in addition

p = 2, gives:

� = 6: (2.12)

3In our conventions F��� = @�A�� + @�A�� + @�A�� .
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Thus the operator in the Yang Mills theory corresponding to the mode discussed here has

a total dimension of 6 in the large N limit. In the next section we turn to determining this

operator.

Before doing so though, let us pause to make contact with the general analysis in [7]. Here

we have focussed on an S-wave mode of the two index gauge �eld. In [7] the propogation

of all the higher Kaluza Klein harmonics arising from the two form �eld (and in fact all

the other supergravity modes) were analyzed as well. The propogation equation for the two

form, eq. (2.56) in [7], was elegantly factorised giving rise to two families, eq. (2.62), and

eq. (2.64) of [7] (also shown in FIG 3 as the two a�� modes). The S-wave mode discussed in

this paper is the k = 0 member of the second family, eq. (2.64). The �rst family, eq. (2.63),

only involves l = 1 and higher angular momentum modes. In fact the l = 1 mode of this

family (which transforms like a 6 of SU(4) and is the mode shown in Fig 3 with a circle) is

discussed in [9] where it was identi�ed with a dimension three operators in the Yang Mills

theory.

3. Identifying the Operator in the Yang Mills Theory

So far in the literature on this subject, a precise procedure for identifying operators in the

Yang Mills theory, that correspond to a particular perturbation mode in the supergravity

theory, has not been given. The supergravity analysis determines the dimension of the

operator. In some cases supersymmetry determines the operator, e.g. the conserved currents

in [9]. However, even in these cases the overall normalisation is not determined a priori. For

example, the relevant power of the string coupling in the normalisation cannot be determined

in this manner. This point becomes clear when one tries to extract absorption cross-sections

from the Yang-Mills theory. The leading power of energy in the Yang-Mills calculation is

determined by the total dimension of the operator, but the power of string coupling depends

on further details of the operator, as is clear from the analysis of [14].

Here, we will explore the idea that these operators can be obtained by expanding an

action containing a DBI and WZ term 4. This method for identifying operators has been

used earlier in [16] for �ve dimensional black holes and in [6] for the 3-brane, where the

action was expanded about at space-time and shown to give consistent results. The present

discussion will have two important new features. First, as we will discuss, it will be crucial to

expand the action about AdS space, rather than at space, to identify the operator correctly.

In many ways, this is the natural thing to do. The supergravity modes we are interested

in are perturbations about AdS space. Thus to couple them consistently one also expects

4Strictly speaking we are proposing to expand the action which governs the dynamics of D3-branes. If

additional terms besides the DBI and WZ terms are present in such an action, as has been suggested in

[15], one would expect to keep them as well. We note here that the additional terms discussed in [15] are of

dimension 12 and higher; such high dimension operators do not alter our conclusions.
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to expand the brane action about the AdS background. Secondly, our analysis will involve

the WZ term in an important way. In particular a cancellation, between two contributions

, which arise from the DBI and WZ terms respectively, to the coupling of a dimension

four operator, will be important in identifying the leading operator. We will see that this

procedure yields a consistent result. In fact, the leading operator which couples to the mode

of section 2 has dimension six. The supergravity analysis showed that it's total dimension

is six as well. Thus, we �nd that the operator does not acquire any anomalous dimensions

in the large N limit.

It is worth drawing attention to one other aspect of the analysis at the outset. The

action we use can be identi�ed with the world volume theory for a set of D3- brane probes.

In the discussion below we will take these branes to be placed at the boundary of AdS space,

at r � R. This is in line with the discussion of [3], [4]. In these references, the idea was

to compute correlation functions by, roughly speaking, regarding boundary values of the

supergravity �elds as sources for the Yang Mills theory . This implies that the Yang Mills

operators should also be identi�ed by working at the boundary of AdS space.

The action for a D3-brane has been studied in [17], [18], and is given by 5:

S = �
Z
d4�

q
�det(Gij + Fij) +

Z
(Ĉ(4) + F ^ Â+ Ĉ(0)F ^ F): (3.1)

The two terms above correspond to the DBI action and the WZ term respectively. It is

worth de�ning the various terms above carefully. Gij refers to the induced world-volume

metric, obtained as the pull-back of the spacetime metric. Similarly,

Fij = Fij � B̂ij; (3.2)

where Fij stands for the gauge �eld on the D3-brane and B̂ij is the pullback of the NS-NS

two form potential. In the W-Z term Ĉ(4), Â and Ĉ(0) refer to the pullback of the R-R four

form, two form and zero form �elds respectively. Strictly speaking we are interested here

in the action for N D3 branes. It has been suggested in [19] that this can be obtained by

appropriately symmetrising the terms obtained from the single brane action. To begin with

we will work with the abelian single brane action. The color factors will be introduced by

appropriate symmetrisation towards the end. Some of our conclusions do not depend on the

details of this symmetrisation procedure.

In the following discussion it is useful to distinguish between three kinds of indices:

�i; i = 0; � � � 3, refer to the world-volume coordinates and are purely bosonic. ZM , refers to

ten dimensional superspace coordinates; M can stand for bosonic coordinates denoted by

m = 1; � � � 10, or for fermionic coordinates denoted by �. Finally, we denote frame indices by

5We have set the dilaton e� = 1 and chosen units for the string tension so that the coe�cient in front of

the DBI term is unity.
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A; A can stand for bosonic tangent vectors, denoted by a = 1; � � � 10, or for spinor tangent
vectors denoted by �. In this note we will be interested in expanding this action about AdS

space to linear order in the perturbation, eq. (2.10), eq. (2.9). Following, [18] we will choose

a static gauge, where Xm = �m;m = 0; � � � 3. The remaining Xm;m = 4 � � � 9 will be denoted
by �m. In addition the kappa symmetry of eq. (3.1) will be used to set half the fermionic

coordinates to zero 6 [18]. The remaining 16 component Majorana-Weyl fermion will then

be denoted by �.

With this notation in hand the induced metric is given by

Gij =
@ZM

@�i
@ZN

@�j
EA
M EB

N�AB: (3.3)

with EA
M being given by:

Ea
m =

r

R
�am;m = 0; � � � 3

=
R

r
�am;m = 4; � � � 9

Ea
� = (���a)�

E�
m = 0

E�
� = ��� :

>From eq. (3.3), (3.4) it then follows that the induced metric is given by 7:

Gij =
r2

R2
�ij +

R2

r2
@�m

@�i
@�n

@�j
�mn

�
 
�� (�i

r

R
+ �m

@�m

@�i
R

r
)
@�

@�j
+ i$ j

!
+

9X
a=0

���a
@�

@�i
���a

@�

@�j
: (3.4)

Similarly, the pullback of the rank-2 tensor is de�ned as

Bij = BAB@iZ
M@jZ

NEA
ME

B
N (3.5)

and the superspace components of BAB are given in [17]. Using these we get

Fij = Fij �
 
�� (�i

r

R
+ �m

@�m

@�i
R

r
)
@�

@�j
� i$ j

!
� Bij

+
R

r

�
Bik

���k@j� � i$ j
�
� R2

r2
(���k@i� ���l@j� Bkl) (3.6)

Adding eq. (3.4) and (3.6) we get that the DBI action is given by :

SDBI = �
Z
d4� (

r

R
)4
q
�det(�ij +Mij) (3.7)

6Our conventions for spinors and Dirac matrices are the same as those in [18]. Namely, the � matrices

are 32� 32 real matrices satisfying, f��;��g = 2��� , with � = (�1; 1; � � �1).
7 To avoid confusion let us note that all indices on Gamma matrices here are frame indices.
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where

Mij =
R4

r4
@i�

m@j�
n�nm +

R2

r2
Fij � 2��[

R

r
�i +

R3

r3
�m@i�

m]@j�

+
R2

r2

9X
a=0

(���a@i�)(���a@j�) �
R2

r2
Bij

+
R3

r3
[Bik

���k@j��Bjk
���k@i�]�

R4

r4
Bkl (���

k@i�) (���
l@j�): (3.8)

This gives rise to the following terms in the DBI action linearly dependent on the NS-NS

two form :

Z
d4 �LBI =

Z
d4�

�
�1

2
BijF

ji +
r

R
�� �i@j�B

ji
�
� R

r

h
���mFmi@j�B

ij
i

�
"
1

2

R4

r4
FimF

mjFjkB
ki

#
+

1

2

R

r
BijF

ji�� �l@l�

�1

8

R4

r4
FlmF

mlFijB
ij + � � � : (3.9)

The ellipses above refer to operators of dimension eight and higher that occur in the ex-

pansion. Also, for the sake of brevity we have regrouped terms so that the indices above

take values in ten dimensions and are raised and lowered by the at space metric. Thus for

example, Fim refers to the ten dimensional �eld strength 8.

The action described above is for a single D3-brane. While a de�nitive action is not

known for N branes, we may adopt the symmetrized trace prescription of [19], so that the

various quantities above have to be replaced by matrices and traced over. The �rst term in

(3.9) then receives a contribution only from the U(1) piece of U(N) and is subdominant in

the large N limit. Thus the lowest dimension operator which couples to Bij in eq. (3.9) has

dimension 4 and is given by the �rst term in eq. (3.9). The subsequent operators listed in

eq. (3.9) all have dimension 6.

The contribution from the WZ term arises from the wedge product of F and Â in eq.

(3.1), which can be expanded as:

LWZ =
1

4
FijÂkl�

ijkl: (3.10)

We remind the reader that in eq. (3.10) Âkl stands for the pullback of the R-R two form.

This is given by:

Âij = Aij �
R

r

h
���k@j�Aik � i$ j

i
+ � � � (3.11)

where the ellipses again denote higher dimensional operators. >From eq. (2.10) it follows

that in the general case, for a perturbation Bij polarised along the brane directions, the R-R

8The last two terms in (3.9) were not included in the �rst version of this paper, we regret this error
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two form is given by 9:

Akl =
1

2
�klij B

ij: (3.12)

Substituting eq. (3.11) and eq. (3.12) in eq. (3.10) then leads to :

LWZ = � r

R
���i@j�B

ji � R

r
�� �m@j� Fim Bij +

1

2

R

r
FijB

ij���l@l�: (3.13)

In obtaining eq. (3.13) we have used eq. (3.6) for F and expanded keeping only terms linear

in Bij. As in eq. (3.9), we have regrouped terms and expressed them in a notation where all

indices take values in ten dimensions (the indices are raised and lowered by the at space

metric). Finally, for reasons mentioned above, we have omitted a term in eq. (3.13) which

goes like BijF
ij.

On adding eq. (3.9) and (3.13) we now see that the dimension four operators that

couple to Bij do indeed cancel between the two equations 10. Furthermore the two types

of dimension six operators which involves the fermionic �elds also cancel between (3.9) and

(3.13). Thus the leading operators are of dimension six and of the form:

O6 = �(
R

r
)4
�
1

2
FjmF

mkFkiB
ij +

1

8
FlmF

mlFijB
ij
�
: (3.14)

While we have suppressed the color indices here, the operators in eq. (3.14) should be

understood as being symmetrised in color space. Eq. (3.14) is the main result of this paper.

A few comments are in order at this stage.

Our starting point was the assumption that the coupling between various supergravity

modes and operators in the Yang Mills theory can be obtained by expanding the action

consisting of the DBI and W-Z terms about AdS space. The consistent answer obtained

above provides evidence in support of this assumption. Note in particular that the analysis

above probed terms in the action of dimension six and involved the W-Z term in a non-trivial

way.

It was crucial in the above analysis to expand the action about AdS space. What would

have happened if we had expanded about at space? In this case, without any �ve -form

�eld strength, the supergravity equations, eq. (2.5), would not have coupled the NS-NS

and R-R two form gauge potentials together and would have lead to two massless modes.

Correspondingly, on expanding the brane action for the coupling to the NS-NS two form,

one would have only got a contribution of the form of eq. (3.8) from the DBI action with no

9Here all indices are being summed using the at space metric. Our conventions for the � symbol are

chosen so that , �0123 = +1.
10 As was mentioned above, we have so far been suppressing color indices. For the dimension four operator

involved here there is a unique color singlet that can be formed ; the cancellation then follows in the full

Non- Abelian theory as well.
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contribution from the WZ term. Thus the leading operator in the Yang Mills theory would

have had dimension four which is di�erent from what we got above.

It will be interesting to study this set of ideas further for the other supergravity modes

as well. We have looked at the S-wave mode for the two form �elds here. As was mentioned

above, the propagation of higher partial waves was studied in [7]. One would like to determine

the corresponding Yang Mills operators as well 11. For one class of supergravity modes

(including an l = 1 mode of the two form �eld) the coupling to the Yang Mills theory has

been written down in [9] from superconformal considerations. It is worth examining if these

couplings can be obtained by expanding the DBI plus WZ action.

4. Note Added in revised version :

While this revised version was being written [20] appeared, where a large class of gauge

theory operators corresponding to supergravity modes, including the operator derived in this

paper, have been shown to follow from the proposal of this work. This paper has also noted

the omission of the second term in O6 in our earlier version.
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